17 research outputs found

    Efficient streaming for high fidelity imaging

    Get PDF
    Researchers and practitioners of graphics, visualisation and imaging have an ever-expanding list of technologies to account for, including (but not limited to) HDR, VR, 4K, 360°, light field and wide colour gamut. As these technologies move from theory to practice, the methods of encoding and transmitting this information need to become more advanced and capable year on year, placing greater demands on latency, bandwidth, and encoding performance. High dynamic range (HDR) video is still in its infancy; the tools for capture, transmission and display of true HDR content are still restricted to professional technicians. Meanwhile, computer graphics are nowadays near-ubiquitous, but to achieve the highest fidelity in real or even reasonable time a user must be located at or near a supercomputer or other specialist workstation. These physical requirements mean that it is not always possible to demonstrate these graphics in any given place at any time, and when the graphics in question are intended to provide a virtual reality experience, the constrains on performance and latency are even tighter. This thesis presents an overall framework for adapting upcoming imaging technologies for efficient streaming, constituting novel work across three areas of imaging technology. Over the course of the thesis, high dynamic range capture, transmission and display is considered, before specifically focusing on the transmission and display of high fidelity rendered graphics, including HDR graphics. Finally, this thesis considers the technical challenges posed by incoming head-mounted displays (HMDs). In addition, a full literature review is presented across all three of these areas, detailing state-of-the-art methods for approaching all three problem sets. In the area of high dynamic range capture, transmission and display, a framework is presented and evaluated for efficient processing, streaming and encoding of high dynamic range video using general-purpose graphics processing unit (GPGPU) technologies. For remote rendering, state-of-the-art methods of augmenting a streamed graphical render are adapted to incorporate HDR video and high fidelity graphics rendering, specifically with regards to path tracing. Finally, a novel method is proposed for streaming graphics to a HMD for virtual reality (VR). This method utilises 360° projections to transmit and reproject stereo imagery to a HMD with minimal latency, with an adaptation for the rapid local production of depth maps

    Real time delivery of HDR video

    Get PDF
    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the football when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, socalled trueHDR, it is crucial that all the dynamic range that was captured or generated is delivered to the display device and tone mapping does not occur anywhere in the pipeline prior to the display. This paper describes a system of encoding and delivering HDR video which enables us to send video with a greater dynamic range than existing solutions from an HDR source (such as an HDR-enabled camera) to any display, including mobile devices, where it can be manipulated in real-time

    Fine-grain Period Adaptation in Soft Real-Time Environments

    Get PDF
    Reservation-based scheduling delivers a proportion of the CPU to jobs over a period of time. In this paper we argue that automatically determining and assigning this period is both possible and useful in general purpose soft real-time environments such as personal computers and information appliances. The goal of period adaptation is to select the period over which a job is guaranteed to receive its portion of the CPU dynamically and automatically. The choice of period represents a trade-off between the amount of jitter observed by the job and the overall efficiency of the system. Secondary effects of period include quantization error, job priority, changes in memory behavior, and battery life of portable devices. In addition to discussing these issues in detail, we present the design and evaluation of a mechanism for period adaptation based on feedback control. Together with an existing proportion allocation mechanism, this period adapter merges the benefits of best-effort and reservation-based systems by providing the fine-grain control of reservation-based scheduling without requiring applications to specify their own resource needs in advance

    Mobile Health–Supported HIV Self-Testing Strategy Among Urban Refugee and Displaced Youth in Kampala, Uganda: Protocol for a Cluster Randomized Trial (Tushirikiane, Supporting Each Other)

    Get PDF
    © Carmen Logie, Moses Okumu, Robert Hakiza, Daniel Kibuuka Musoke, Isha Berry, Simon Mwima, Peter Kyambadde, Uwase Mimy Kiera, Miranda Loutet, Stella Neema, Katie Newby, Clara McNamee, Stefan D Baral, Richard Lester, Joshua Musinguzi, Lawrence Mbuagbaw. Originally published in JMIR Research Protocols. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/)Background: HIV is the leading cause of mortality among youth in sub-Saharan Africa. Uganda hosts over 1.43 million refugees, and more than 83,000 live in Kampala, largely in informal settlements. There is limited information about HIV testing uptake and preferences among urban refugee and displaced youth. HIV self-testing is a promising method for increasing testing uptake. Further, mobile health (mHealth) interventions have been effective in increasing HIV testing uptake and could be particularly useful among youth. Objective: This study aims to evaluate the feasibility and effectiveness of two HIV self-testing implementation strategies (HIV self-testing intervention alone and HIV self-testing combined with an mHealth intervention) in comparison with the HIV testing standard of care in terms of HIV testing outcomes among refugee/displaced youth aged 16 to 24 years in Kampala, Uganda. Methods: A three-arm cluster randomized controlled trial will be implemented across five informal settlements grouped into three sites, based on proximity, and randomization will be performed with a 1:1:1 method. Approximately 450 adolescents (150 per cluster) will be enrolled and followed for 12 months. Data will be collected at the following three time points: baseline enrollment, 8 months after enrollment, and 12 months after enrollment. Primary outcomes (HIV testing frequency, HIV status knowledge, linkage to confirmatory testing, and linkage to HIV care) and secondary outcomes (depression, condom use efficacy, consistent condom use, sexual relationship power, HIV stigma, and adolescent sexual and reproductive health stigma) will be evaluated. Results: The study has been conducted in accordance with CONSORT (Consolidated Standards of Reporting Trials) guidelines. The study has received ethical approval from the University of Toronto (June 14, 2019), Mildmay Uganda (November 11, 2019), and the Uganda National Council for Science and Technology (August 3, 2020). The Tushirikiane trial launched in February 2020, recruiting a total of 452 participants. Data collection was paused for 8 months due to COVID-19. Data collection for wave 2 resumed in November 2020, and as of December 10, 2020, a total of 295 participants have been followed-up. The third, and final, wave of data collection will be conducted between February and March 2021. Conclusions: This study will contribute to the knowledge of differentiated HIV testing implementation strategies for urban refugee and displaced youth living in informal settlements. We will share the findings in peer-reviewed manuscripts and conference presentations.Peer reviewe

    Chlorhexidine versus povidone–iodine skin antisepsis before upper limb surgery (CIPHUR) : an international multicentre prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is the most common and costly complication of surgery. International guidelines recommend topical alcoholic chlorhexidine (CHX) before surgery. However, upper limb surgeons continue to use other antiseptics, citing a lack of applicable evidence, and concerns related to open wounds and tourniquets. This study aimed to evaluate the safety and effectiveness of different topical antiseptics before upper limb surgery. Methods This international multicentre prospective cohort study recruited consecutive adults and children who underwent surgery distal to the shoulder joint. The intervention was use of CHX or povidone–iodine (PVI) antiseptics in either aqueous or alcoholic form. The primary outcome was SSI within 90 days. Mixed-effects time-to-event models were used to estimate the risk (hazard ratio (HR)) of SSI for patients undergoing elective and emergency upper limb surgery. Results A total of 2454 patients were included. The overall risk of SSI was 3.5 per cent. For elective upper limb surgery (1018 patients), alcoholic CHX appeared to be the most effective antiseptic, reducing the risk of SSI by 70 per cent (adjusted HR 0.30, 95 per cent c.i. 0.11 to 0.84), when compared with aqueous PVI. Concerning emergency upper limb surgery (1436 patients), aqueous PVI appeared to be the least effective antiseptic for preventing SSI; however, there was uncertainty in the estimates. No adverse events were reported. Conclusion The findings align with the global evidence base and international guidance, suggesting that alcoholic CHX should be used for skin antisepsis before clean (elective upper limb) surgery. For emergency (contaminated or dirty) upper limb surgery, the findings of this study were unclear and contradict the available evidence, concluding that further research is necessary

    A feedback-driven proportion allocator for real-rate scheduling

    Get PDF
    CPU scheduling in conventional general purpose operating systems performs poorly for real-rate applications, applications with specific rate or throughput requirements in whic
    corecore